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A semiclassical method for solving the quantum Liouville equation in
one-dimensional phase-space is described. The development is based on
constructing a Gaussian density matrix and is applicable to systems in pure
and in mixed states having nonlinear interaction potentials. The density
matrix is constructed using a set of dynamic variables whose expectation
values are considered to be relevant for the dynamics. The self-consistent
equations of motion are then derived for these expectations from the quantum
Liouville equation using a projection scheme. The solution of these self-
consistent equations provides the time evolution of the density matrix. The
present method can yield, in principle, exact values for these expectations
for all times. A model calculation is carried out to describe the
vibrational motion of an arbitrary diatomic molecule on an anharmonic
potential surface. However, the potentiality of this method 1lies in
describing the time evolution of systems in mixed states and hence in
describing the dynamics of molecular processes in condensed phases.

I. INTRODUCTION

Recent advances in the experimental study of the various molecular
dynamical processes in condensed phase, such as energy transfer, molecular
dissociation reactions, spectral line shapes, etc., require theoretical
models for the quantitative understanding of the dynamical processes involved
in condensed phases. There has been progress in studying equilibrium
properties using classical [1]), semiclassical [2], fully quantum mechanical
(3] and quantum field theoretic methods [4,5]. Methods are also available
for treating time-dependent processes within the classical framework [6].
However, very few theoretical developments are available for treating time-
dependent processes incorporating quantum effects. These are the quantum
corrections to the classically computed time-correlation functions (7], the
exp(S) approach of Arponen an? co-workers [4]) and the semiclassical Gaussian
wavepacket dynamics (GWD) approach developed notably by Heller ([8]. The
semiclassical GWD approach describes a self-consistent solution of the time-
dependent Schrodinger equation and thus is restricted in its application to
systems in pure states. Extension of this GWD method to the simulation of
time-dependent properties of N-particle systems interacting through realistic
pair potentials within the variational and nonvariational framework are also
avajilable in the literature [9]. Such application requires tedious thermal
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averaging, which arises from the fact that we have no knowledge about initial
conditions of the N-particle system.

Our objective 1is to develop a similar GWD approach which as such is
applicable to systems in pure and in mixed states. That is, when treating
systems in mixed states, we do not need to perform tedious thermal averaging.
Our development satisfies the maximum entropy principle ({10} when treating
equilibrium or nonequilibrium systems. However, we no not make the
assumption that the exact nonequilibrium statistical density matrix |is
approximately equal to the local equilibrium one [11-13]. For an N-particle
statistical system it is practically impossible to construct a density matrix
which contain all information about the system. However, with the advent of
projection operator techniques {11,14], it has been possible to construct
density matrices which contain information sufficient for the calculation of
various physical quantities of interest.

In this paper we are interested in a reduced description of the exact N-
particle system, which is the time evolution of the N single-particle density
matrices in a mixed state. We define our reduced density matrix,
pre(x,x',t), as a product of N single-particle density functions

N
X,X';t) = [ X,,x!t) , 1
pre( ) j.l OJ( J)xjt ) ( )
where X is a vector with N coordinate components x,...x,. The time evolution

of these density functions, ¢, are then obtained from the quantum Liouville
equation using a projection ope;ator scheme (11,14). We define each single-
particle density function ¢ ,(x,,x!;t) from the perspective of nonequilibrium
statistical mechanics as [10?11416

oj(xj.x_',;t) = <xj|oj(t)|x3>
- <xj|exp[2 Aja(t) Ajal|x3> ' (2)

a=0

which contains all information about the single particle system. The
A c(t)'s are Lagrange multipliers, and the A u‘s are the dynamical variables.
Slnce we are not interested in all the 1nfoématlon contained in the ¢

's, we
construct our Qj's with respect to the six dynamical quantities J
- - - 22
Ajo i, A%l xj, AJZ pj, Aj3 xj.
= p , = XD +0D.X 3
Aya = Pyr My = Xpy + Byxy s @)

where p, 1is the momentum associated with the k-th particle and the hat
designates an operator. As we shall see later, the choice of these dynamical
quantities allows us to describa the time evolution of each single-particle
density function incorporating quantum fluctuations. The time evolution of
the expectations of these dynamical quantities, <A, >, are then obtained from
the quantum Liouville equation using the projectio aoperator scheme [11,14).
The choice of the single-particle density operator as given by Eq. (2) is by
no means unique. Our choice is motivated by the physical consideration which
is the maximum entropy principle {10,11).

We confine our development to one-dimensional phase space. In the next
section we derive the equations of motion for the expectations, <Aja>’ in
closed form and construct the corresponding density function for” mixed
states. In Sec. TII we show that under certajn conditions the density
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function for mixed states reduces to the density function for pure states.
To describe the time evolution of the pure state density function, we then
derive the equations of motion for the corresponding dynamical quantities.
In Sec. IV we show that our maximum entropy-based density function can also
describe the time evolution of a harmonic system in thermal equilibrium [15]).
In Sec. V we solve the equations of motion for the pure state to describe the
vibrational motion of an arbitrary diatomic molecule on a Morse potential
surface. We then compare our results with those obtained using the existing
Gaussian wavepacket dynamics method [8,9], and a discussion 1is provided in
Sec. VI.

II. CONSTRUCTION OF THE DENSITY FUNCTION AND DERIVATION OF THE EQUATIONS OF
MOTIONS FOR SYSTEMS IN MIXED STATES

We characterize our N-particle system by a Hamiltonian

N 2
P (4)
H= z . + V(xl...x“)
k=1
and a density matrix p(X,X';t) which satisfies the quantum Liouville eqution
98 . _j1p = -(4/K)(H,p) (5)

dt

where is the mass of the k-th particle and V is the interaction potential.
Since Wwe are interested only in the time evolution of the N single-particle
density functions, we partition our total density matrix as

o(t) = p_(t) + o, (t) , (6)

where p_ (t) is a reduced description of the N-particle interacting system
and is represented by a product of N single-particle density functions as
described in Bq. (1). Py (t) represents the irrelevant degrees of freedom,
since it does not contain any dynamical degrees of freedom of any single
particle in the coupled N-particle system, but rather the correlations
between single particle systems produced by their interaction.

We assoclate entropy S with our system by using the relation [10]

Ss-k Trpr.(t) 1npt.(t) (7)
where k is Boltzmann's constant. We maximize entropy subject to the
constraints

Trpt.(t) =] (8a)
and

.ja(:) - <Aja(t)> - TrAJapr.(t) ] TrAJcp(t) , (8b)
wvhere the Aja's are the 6N dynamical variables of interest to us.

We now derive explicit expressions for the time evolution of the
expectations, a, (t), using the time-dependent projection operator scheme
[14] followed injgonstructing the maximum entropy distribution of the reduced
density operator po_ (t) in one-dimensional phase space. From now on we shall
refer to these equi!ions of motion as reduced equations of motion since they
describe the time evolution of the reduced density operator pre(t). We shall
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use the projection operator technique in Liouville space [11,14]. In this
space f and p(t) can be written as |H>> and p(t)>>. 1In this notation Eq.
(8b) becomes

Aja(t) = <<pte(t)|Ajc>> z <<p(t)|Aja>> . (8¢)
For each degree of freedom j, we now define a 6 x 6 matrix with elements
B>> £ Tr[A

Dis(t) = <<Aja|pre(t)A (t)AjB]

1-
3 jcpre
a,p = 0,1,...5 (9)

and the Liouville space projection operator

N 5
-1
P(t) = 2 2 lo,o(0IA, 2> [DI(0)] 5] <chyq] (10)
j=1 a,p=0
having the following properties:
a) P(t) P&t') = pP(t); t>¢t'
Po(t) = P(t) (11a)
b) P(t)[p(t)>> = [p_ (£)>> (11b)
c) <<Ajc|P(t)§(t)>> = <<Aju|6re(t)>>
dp__(t)
where p(t) = 93%22 and 5re(t) = ——Eﬁz—— (11c)
d) P(t)|p(t)AjB>> - 'pre(t)AJB>> (114)

It has been shown in a separate communication [16] that the properties (11)
can easily be derived using the definitions (9) and (10). P(t), therefore,
is the projection operator, since it reduces the exact density matrix p(t)
to the simpler distribution pr.(t).

Let us now assume that at some time t = t'
] ]
p(e') = p (t') . ’ (12)
Using this assumption and introducing the complementary projection
Q(t) = 1 - P(t) 13)

as shown in Ref. 16, we can vwrits the exact reduced equations of motion
(REM) for the ‘jn(t)" from the quantum Liouville equation (5) as

ija(c) - - i<<AJa|L|pr.(t)>> + z Hip(t,t')ljs(t) . (14a)
8
where we have introduced the 6§ x 6 matrices
Hia(t,t') = -1caA [LA(OU(E e ) o (EDA)>> (14b)

Ris(t,t') = <<AJ°|U(t,t')|pr.(t')A 8> (l4c)

3
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S
J 'y o J ' h| 1yy-1 4
Mig(tne') = ) W (e e RICe, )] ) (144)
¥=0
Here U(t,t') is the time evolution operator

U(t,t') = exp[-iL(t-t')] . (lse)
Equation (14d) can be recast in matrix notation:
m(e,e) = wie,e)RIce, et . (14£)

Equation (14) describe the time evolution of the 5N dynamical quantities a,
(f = 1,...N; a=1,2,...5) and are exact. There are 5N nonlinear coupl &
differential equations for SN unknown a a(t). In these equations the time
derivative of a, at time t depends on’all a,_  at the same time. Note that
we assume AjO to"be the unit operator, anaB normalization requires its
expectation” "value to be independent of time, a 0o 1. An alternative
derivation of Eqs. (14) is also possible [14,16], whele the time derivative
of a at time t depends on all a,_ at previous time t' < s < t, and the
resulé?ng equations are I8

éju(t) = -i<<Aja|L'pte(t)>>

t
- Jt'ds <<Aja|Lﬂ(t.s)Q(s)L|pre(t)>> (15a)
wvhere
t
H(t,s) = exp[-i I dt Q(t)L] (15b)
0

is a time-ordered exponential. Now if we assume that condition (12) holds
for all times, then Q(t)p(t) = 0, and we are left with the first term on the
right-hand side of both Eqs. (14a) and (15a), which represents a mean field
time evolution of the N-particle system. The second terms are the
correlation terms and arise from the fact that p(t) = p_ (t) for all times.
If we retain up to a given order in the correlation terms in Eqs. (l4a) and
(15a), then they yield different approximations. However, in this paper we
are interested only in the mean field time evolution of the N-particle
system, where the time evoution of the expectations of the dynamical
quantities, Aja' are given by

iJa(:) = i/h Tt{Aja[H.pre(t)l} . (16)

For our convenience, however, we evaluate explicitly the time evolution of
the dynamical quantities

ojl = <x%>, °j2 ; <pj> ) ) (17a,b)

93 " <xj> - (xj> ’ oj4 = <pj> - <pJ> (17¢,d)

o5 = [<xjpJ +pyxy> - 2<xj><pj>] . (17e)
given by [16]

éjl = ojzlnj . (18a)
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&jz = -<v3(x)> , (18b)
0j3 = ojS/mj » (18C)
°j6 = -<V3’(X)>ojs . (184d)
: = ‘_,J_l‘, - "
ajs 2{ mj <Vj(X)>aj3} . (18e)
vhere
' - 3V
vj(x) o, , (19a)
vi(X) = 93% : (19b)
3 ox
3
400
Vi) = jgx Vi (K Xit) (19¢)
N
pte(X,X;t) -321 OJ(xj.xj;t) (19d)
(x.-o 1)2
I U D S B (19e)

¢, (x,,x ;t) = 1 expl-
I e V276 .4 20
33 33

<V'(X)> 1is expressed in a similar way to Eq. (19c) by replacing V}(X) with
vidx). Equations (18) are the time-dependent self-consistent fieldd (TDSCF)
eﬂuations. For each particle j we obtain a closed set of five equations,
vhich show correct self-consistent behavior in any potential and are coupled
to each other. The first two equations in (18) express Ehrenfest's Theorem
[17), and the third and fourth give a measure of the uncertainty in position
and momentum measurement in the system. The fifth equation appears only
vhen we are treating systems in a mixed state. For systems in a pure-state,

= (40 -k . (20)

2

%35 33%34
From Bq. (19) we find that for a successful application of the REM, the
choice of the form of ¢, is crucial. Our particular choice, as described by
Egs. (2) and (19e), is Qy no means unique. We are motivated by the physical
consideration which is the maximum entropy principle [10]). Such choice for
¢, connects the present semiclassical procedure with the more general
péoblem of the derivation of REM in nonequilibrium statistical mechanics
[18,20].

In the following we show that the choice of the dynamical quantities as
described by Eq. (3) produces a Gaussian distribution for each ¢, in one-
dimensional phase space. We now derive explicitly the 3hase-space
representation (q,p) for one degree of freedom. The proof holds, however,
for any N since we represent our reduced density function p_ (X,X';t) by a
product of N single- particle density functions oé(xa,xj;t) (E§. (1)). we

ri

therefore, from now on, choose to drop the subs t § and replace Eq. (1)
by

o(x,x',t) & <xfao(t)|x'> (21a)
with




S
o(t) = exp[z Aa(t)Aa] . (21b)
a=0

As shown in Ref. 16, the Wigner representation [19] of the density operator,
a(t), may be written in the form

ow(q.P;t) = % IaB-Yzlh]!exp[(628+02a-76¢)/(&a5-72)]
x exp[uq2+8p2+ypq+6q+¢p]

with

JJ dqdp ow(q,p,t) =1 , (22)

and the corresponding coordinate representation is obtained from the
transformation

o(q+s,q-s;t) = J~ dp ou(q.p;t)eprZips/ﬁ] . (23)

Using the substitutions
q = (x+x')/2, s = (x-x')/2 (24)
in Eq. (23), we obtain

o(xixt5t) = sk (y2-u08)texp( (288-v0) /48 (4aB-v?))

2
x expll<a-1—)(x+x'>2 + 5(6-1§)(x+x-)

(x x ) (x - ) - (x-x')] , (25)
Aﬁ 8 asn 28K

with a, B, y, § and ¢ being real parameters, which may be expressed in terms
of A Equations (22) and (25) accomplish our goal of expressing the
maximum enéropy distribution (Bq. (21b)] in phase space (q,p) and in the
coordinate representation (x,x'). However, to obtain the TDSCF set of
equations (18), we have wused a different form of representation of these
distribution functions, which were obtained by expressing Eqs. (22) and (25)
in terms of the expectations of the dynamical quantities described by Eq.
(17). They are related to the parameters by

0,(t) = <x(t)> = (288-v8) (v2-4ap)"! (26a)

o,(t) = <p(t)> = (206-v8)(y2-40p) "1 (26b)

a3(t) = <x(e)> - <x(t)>? = 28(v%-4ap)”! (26¢)

0,(t) = <p2(t)> - <p(t)>2 = 2a(y2-4ag) "} (264)

0(t) = <xpipx> - 2¢x0¢p> = -2y(yP-4ap) "} (26e)
or

a=co, B=coy, y=-co

§ = c(o 2% " 20104), ¢ = c(o 1% " 20 ] ) ,

Wy VA SRR v 9T
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where

= 4(v?-4aB) = (27)
Og -Ao3oA

Expressing the phase-space density function o (q p,t) of Eq. (22) in terms

of the o,(t)'s, we have

b
ow(q.p;t) =1 exp{- ————3——5 [°4(q‘°1)2 + 03(p-02)2
ﬂ(4030a'05) 40304-05
- cs(q-ol)(p-oz)]} , (28)

and the corresponding coordinate representation (Eq. (25)) becomes

1 2
o(x,x";t) = 75?:; exp(-o1 /203)

o,
x expl- ———(x+x ) + 2 (x+x') + (x-x')2
93 %3 4K o4
log 2 .2 1 ,
+ 403ﬁ (x“-x'%) - EE;K (0105-20203)(x-x )l . (29)

Thus, the particular choice of the dynamical quantities, as depicted in Eq.
(3), generates a Gaussian form for the representation of the corresponding
single-particle distribution functions. In the following section we shall
show that condition (20) reduces these mixed-state density functions [Eqgs.
(28) and (29)] to that of pure states. We shall also derive the REM for
pure states.

ITI. REDUCED EQUATIONS OF MOTION (REM) FOR THE PURE-STATE DENSITY FUNCTION
Using the same projection scheme as 1in Sec. 1I, a self-consistent
description for the time evolution of the pure-state density function can

also be obtained. Following Heller [8), we define the reduced density
function for pure states in the coordinate representation as

oy(x,x'5t) = (——)5 expl- & (x-x)? + (x'-x)2)
2 az{(x-xt) - (x'-x, )2 + “ P (x-x")] , (30)

where the parameters a,, a,, X, and p, are related to the ¢, (t)'s as
1° 72" Tt t i
follows:

ol(t) =X, oz(t) =P (31a,b)
04(t) = ZZI- a,(t) = !ifli; a = ia +a, (31c,d)
ag(t) = E;% = lao(t)o, (0)-K2)F (31e)
0 2 2 0
Therefore, o (x,x';t) = 72—;—_3 exp(- 3 3)exp[- ——3'(: x4+ ——;(x+x )




io
S 2,2 _ i . ot
+ 4503 (x“-x'7) - 203” (°1°5 20203)(x x)) ., (32)

and the corresponding phase-space representation is given by

oﬂw(q.p.t) = ;% expl - ii {aé(q-ol)2

+ 03(p-0)% = 0g(a-0,)(p=0,)}] , (33)

where o, is given by (3le), which is the same as condition (20). These
pure-state density functions can also be obtained directly from the mixed-
state density functions (Eqs. (28) and (29)) using condition (20).

We now assume that the time evolution of the pure-state system is
described by the approximate density functions, (32) and (33), for all
times. This assumption then allows us to construct the SCF set of equations
for the expectations of the corresponding dynamical quantities using Eq.
(16). They are

o, (t) = 72{t) (34a)
1 m

éz(t) = -V (x> (34b)

63(:) = % (403(t)04(t)-n2)5 (34c)

5, (1) = -(403(t)04(t)-n2>* (x)> . (34d)

This is a closed set of four equations which differ from the first four
equations in the mixed case [Eqs. (18a) through (18d)] due to the fact that
0 1s no longer an independent variable [Eq. (20)), and for the same reason
wé do not have any REM for O in the pure case.

The REM of Eq. (34) are obtained from Eq. (16) under the exact
potential of the system. These equations, as shown below, are different
from those obtained by solving the quantum Liouville equation (5) for pure
states under the locally quadratic potential approximation [8]}. They are

o,(t) = 72 (35a)
1 m

0,(t) = .v-(x)|x='°l (35b)

55(t) = (4oy(t)o,(6)-KD) /m (35¢)

5,(6) = ~(ho ()o, () KD (o) . (354)

X'Ol

Here the first two equations describe the classical motion for a system in a
pure state and are not coupled with the other two equations [(35c) and
(35d)), which describe the time evolution of the variances (Eqs. (17¢),
(17d)). Therefore, the present set of equations describe the trajectory of
a particle whose position and momentum at time t are known from the center
of the wavepacket. However, the trajectory of a particle is described by
the wavepacket [Eqs. (32) and (33)]) as a whole, which inevitably has certain
spacial extension.




On the other hand, if we look at the SCF set of equations (34), we find
that the first two equations (a and b) are coupled with the other two
equations. Again, the right-hand side of Eq. (34b) is equal to the average
of the force over the whole wavepacket and thus differs from Eq. (35b) due
to the fact

Vx> V)L - (36)
1

In Sec. V we shall analyze the relative meris of these approaches by
studying the vibrational motion of an arbitrary diatomic molecule on a Morse
potential surface. It is important to note here that for the mixed case,
even if we start with a minimum uncertainty wavepacket the variances o, and
o, are not constants of motion as the system evolves, which is evident “from
Eqs. (18). In deriving expressions (32) and (33) we assumed that the N-

particle density function may be written as [20]
p(X,X';t) = ¥(X,t) ¥*(X',t) , (37)

where ¥(X,t) is the exact wave function of the N-particle interacting
system. We then introduced the approximation

N
= T , , 38
¥(X,t) j:l wj(xj t) (38)

where the ¥, (x,,t)'s are the single-particle wave functions and contain all
informationJabo&t the single-particle systems, including their phase, A
reduced description of these single-particle wave functions was first
introduced by Heller [8], which in terms of the oi's may be written as

io ic

v(x,t) = (21103)-i exp((z%; + zg%;)(x-cl)z + ‘EZ‘*'°1’ + 1%} ,  (39)

where for notatjional convenience we have dropped the subscript j. o is
given by condition (20), and y is the phase-factor. The density funttion
corresponding to this wave function is given by expression (32), which we
obtained from the maximum entropy distribution (29) using condition (20).
Therefore, if we assume this Gaussian wave function (39) to approximate the
exact single particle wave function for all times, the time evolution of
this reduced wave function under the exact potential of the system can be
obtained by solving the SCF set of REM given by Eqs. (34), along with the
equation for the phase factor

2

V.o o
h 23 .2 _
mo, *S5T - Y (40)

y(t) = -

vhich is obtained from the Schrodinger equation

2

<E> = <§; + V(x)> = ik<y|d> (41)

The quantities VO’ V, in Eq. (40) are given by

2
2

2

VO- <V>, V2 = (/>
ax




Heller first evaluated this propogator (39) under the locally-quadratic
potential approximation [8].

IV. CANONICAL DENSITY FUNCTION FOR A HARMONIC SYSTEM

In this section we show that the TDSCF set of equations (18), which
describe the time evolution of any irreversible process under the exact
potential of the system by using the reduced density matrix expressions (28)
and (29), can be used to describe the time evolution of a harmonic system in
thermal equilibrium [15). When a system is in thermal equilbrium, we have
the density matrix satisfying maximum entropy principle as [10]

aT(t) = exp(-BH)/Trlexp(-gH)]) , (42)

where B = (kT).1 and H is the Hamiltonian of the systenm. Under the
quadratic potential approximation, where

H(q,p) = p>/2m + dmw?q® , (43)

a Gaussian form of representation of the density operator (42) can be
obtained, which in the coordinate representation (x,x') is given by

(o tanh(Bﬁw/Z)li
mh

oT(x,x';t) =
x exp{ii—gqi%%giasl(x2+x‘z)cosh(Bﬁw)-Zxx']} . (44)

Expectation values of the dynamical quantities (17), with respect to this
density matrix, are

o, = o , o, = 0

0, = 3h= coth(iphu) , o, = bmuk coth(ifkw) , og =0 , (45)

where for convenience we have dropped the j-subscript. Now expressing the
thermal density function o, in terms of the oi(t)'s, we obtain

T
g
fig) = I S TUTEY S B SREY -

op(x,x';t) = === exp{- g—(x+x') 7(x-x")7} (46)

3 3 2h
and the corresponding phase-space density function becomes

1 1 2 1 2

ow(qlp.t) = 21’ 7=°301‘ exp(- 203q = zol‘p ] . (“7)

The time evolution of these density functions are found by solving the set
of equations (18) with 1initial conditions given by Eq. (45) and the
interaction potential given by expression (43). This is because Egs. (46)
and (47) do not satisfy condition (37). Our development, as described in
Sec. II, however, is more general since it can be used for studying the
relaxation of a system to thermal equilibrium with a thermal bath under the
exact potential of the system.

V. VIBRATIONAL MOTION OF AN ARBITRARY DIATOMIC MOLECULE ON A MORSE
POTENTIAL SURFACE

In this section we solve the TDSCP set of REM (34) to describe the
vibrational motion of a diatomic molecule. We consider a diatomic molecule

. AT L7 O+ RS % ST L -




with two electronic states, a ground state [g> and an excited state [e>.
Its Hamiltonian is

H= |3>Hg<8| + |e>(wg.e + H)<e| . (48)

We assume the ground state potential to be harmonic and the excited state
potential to be given by a Morse oscillator. We then have

2 2 2
HS = %; + !uwg(x-xg) (49a)
2 -g(x-x_)
- = . e’ 2
H, ot ws,e + De(l e ) R (49b)

where i is the reduced mass of the molecule, w_ is the vibrational frequency
on the lower potential surface, W is the efcitation energy from lower to
the upper surface, D is the equil’bgium dissociation energy of the upper
potential surface, and B is a constant given by [21])

(49¢)

- {éﬂzcg)i
B Deh Ye

where ¢ is the wvelocity of light, h is Planck's constant, and we is the
vibrational frequency that the anharmonic oscillator would have classically
for an infinitesimal amplitude. For our purposes we assume

1 1

w =439S5 cm , p=0.5a.u.,D =338310cm , D = heD
e e e e

-1 - -1
B=1.934 ", X2 0.504 &, "s e 26,230 cm

» X, = 0.6325 A .(50)

We consider the molecule initially to be in its ground vibrational state
satisfying the minimum uncertainty condition

2
.

°% "4
and we set initially o, = 0.604 A and o, = 0.0 gm cm/s. We now assume that
at time t = 0 there is * Franck-Condon tfansition from the ground to the
excited potential surface. After this transition the molecule will start
executing vibrational motion about the excited state equilbrium position X .
To study this vibrational motion, we solve the TDSCF set of REM (34) th
dimensionless form, where the dimensionless quantities o ,'s are related to
the o,'s as i

i ; y

- ™ . 1 - mw -

o, = (-i} Oys Oy ™ 7=g=0y, Oy = f~ 030 O, = =0, (52)
vhere w = 2wcw with initial conditions (591s 53 = 5.0, 0, = 0.05 and with
up to 200 time steps on the order of -0.3x10 s. Variations of o,(t) and
a,(t) with time are shown in Figs. 1 and 2, respectively. We have used the
ordinary differential equation solver technique of Gear [22]) to solve the
TDSCF set of equations (34). In PFig. 3 we elaborate further on the
performance of our SCF approach by tracing the path of o, over the excited
state potential surface. As evident from Figs. 1 and 2, given the initial
9, and o, on the potential surface, which for the present case is o, = 0.604
A" and 3 = 0.0 gm cm/s, our TDSCF method describes anharmonic vi&rational
motion of"the diatomic molecule over this surface from o, " 0.604 A to 1.08

(51)




For the sake of comparison, we also solve in dimensionless form the
TDSCF set of REM (35), which describe the variations of oi(t)'s with time
under the quadratic potential approximation. We use the same set of initial
conditions as above. Time variations of o (t) and o,(t) for the present
case are shown in Figs. 4 and 5, respectively. In Fig. 3 we trace the path
of o(t) obtained under the quadratic potential approximation using a dashed
line to illustrate the performance of Heller's method compared to our TDSCF
pethod.
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VI. DISCUSSION

We have described a method for studying the dynamical properties of
irreversible statistical systems. Irreversibility is introduced into our
system through quantum measurements [20}, and this enables us to make use of
the maximum entropy-based formulation (MEF). Use of MEF in constructing the
reduced density matrix (2) eliminates the necessity of performing tedious
thermal averaging [9]. Therefore, the present TDSCF method will be
particularly suitable for studying the various dynamical processes in
condensed phases. The present development resembles the derivation of
thermodynamic theorems from statistical mechanics due to the fact that the
construction of the density matrix and the corresponding REM are independent
of the specific nature of the Hamiltonian. For this reason, we find that
the present method can be used to describe the relaxation of a system to
thermal equilibrium with a thermal bath under the exact and the quadratic
potential approximations. Under certain conditions (20), the present method
can also be used to describe the time evolution of systems in pure states.
The derivation of the REM are based on a projection scheme, and the
projection operators are defined in terms of the MEF density matrix. The
TDSCF set of equations (35) and (40), which describe the time evolution of
pure states, have been shown to be quite useful for describing a variety of
molecular dynamical processes, including molecular scattering, electronic
spectra, dissociation of clusters and thermal desorption from surfaces
{9,23). The present phase space TDSCF method enjoys all these advantages.

In deriving the TDSCF set of equations, we have not had to make the
assumption that the exact nonequilibrium statistical density is in some
sense approximately equal to the local equilibrium one, and thus the present
method is much more general than the 1local equilbirium formulations. A
close look at our TDSCF set of equations (18) shows that they do not contain
A. That is, even though we started our development using the quantum
Liouville equation, the time evolution of our MEF-based density functions
(28) and (29) is described by a classical TDSCF set of REM. Therefore, the
present MEF-based TDSCF method 1is completely classical. This in turn
suggests that the present procedure may be repeated for classical mechanics




by replacing L in Eq. (5) with the classical Liouville operator. Each
single-particle density function ¢ (x ,x};t) should then be replaced by a
phase space distribution which 13 Ggus ian in x, and p, (28), We can then
repeat the present procedure to obtain the TDSCF det of REM (18), and hence
to confirm their classical nature. Our TDSCF method represents the lowest
order of a systematic expansion, (14) and (15), and may therefore be
improved by incorporating correlation terms order by order. Inclusion of
the correlation terms will cause our REM to contain W, and hence will depart
from the classical picture. Therefore, the correlation terms may be
considered as quantum corrections to our classical description ([19].
However, for harmonic systems with normal mode x,'s, the TDSCF set of REM
are exact. An alternative way to improve our TDSCFJdescription would be to
include cubic and higher moments to construct each single-particle density
matrix ¢ (x.,x!;t). This would then be a departure from the Gaussian
picture.j J

Although the inclusion of the correlation terms, (14) and (15), and the
higher moments, (2), would improve our TDSCF description, the product
ansatz, (1), for the N-particle density function implies neglect of exchange
effects and an incomplete account of quantum mechanical correlations. This
is one of the limitations of our single-particle description of an
interacting N-particle statistical system. Implementation of the exchange
effects for equilibrium Bose and Fermi systems are available in the
literature {4,24], Again, the present development is restricted to one
dimensional phase space. Extension to the simulation of equilibrium and
nonequilibrium statistical systems in three-dimensional phase space will be
reported in the future.
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